
APPLICATION NOTE

J.NICOLAI

AN590 / 03,93

PWM Generation with ST62 Auto-reload Timer

Figure 1. Auto-reload Timer Block Diagram

INTRODUCTION
This note presents how to use the ST62 Auto-reload Timer (ARTimer) for the generation of a PWM signal
tunable in frequency and duty cycle. As example, the generation of a 30kHz PWM signal with duty cycle
proportional to an analog input voltage is presented.

Auto-reload Timer description
This timer is an 8 bit timer/counter with prescaler. It includes auto-reload PWM, capture and compare ca-
pability with one input and one output pins. It is controlled by the following registers (8 bit):

- Mode Control Register (MC)

- Status registers (SC0, SC1)

- Load register (LR)

- Incremental counter register (TC)

- Compare register (CP)

- Reload/Captureregister (RC)
It can also wake the MCU from wait mode and exit from stop mode if an external event is present on the
input pin. The prescaler ratio can be programmed to choose the timer input frequency FIN (see Table 1).

1/6

Pulse Width Modulation (PWM) Generation
Using the PWM generation capability of the AR-
Timer, the CPU of the microcontroller has only to
start/stop the timer and update the duty cycle.
High speed PWM signals in the range of 100kHz
can be generated. The timer clock input frequency
FIN can be selected by the oscillator clock fosc and
the prescaler ratio. The PWM signal period is con-
trolled by the Reload register. The duty cycle is de-
fined by the Compare register CP (see Figure 2).

The register TC is incremented from RC to 255d,
then reloaded at RC to count again. The PWM out-
put is set on the overflow of TC and reset when
TC=CP.

CP can have any value between RC and 255d. So
RC should be minimal and the prescaler ratio as
small as possible to achieve a maximum resolution.
Major formulae for PWM generation are:

FIN = fosc / (prescaler ratio)
FPWM = FIN / (255 - RC)
Duty cycle: (CP -RC) / (255 - RC)
Resolution: 1 / (255 - RC)

With a 8MHz oscillator and a prescaler ratio of 1,
the maximum resolution (1/255) leads to a PWM
frequency FPWM of 31.3kHz.A resolution of1/64 al-
lows to increase FPWM to 125kHz.

Figure 2. PWM Timer Operation

Bit 0
Reg. SC1

PS2 PS1 PS0
PRESCALER

Ratio

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 3

1 0 0 1 6

1 0 1 0 12

1 0 1 1 24

1 1 0 0 48

1 1 0 1 96

1 1 1 0 192

1 1 1 1 384

Table 1. Prescaler ProgrammingRatio

PWM Generation with ARTimer

2/6

Example 1:
Target: Generate a 12kHz PWM signal with a duty cycle of 37%, using an oscillator frequency of 4MHz:

We want to generate a periodic signal at a frequency of 12 kHz and a duty cycle of 37% .
The CPU frequency (quartz frequency) is 4 MHz.

Let’s try with a prescaler ratio of 3:
FIN = 4 MHz / 3 = 1333.33 kHz
12 kHz = 1333.33 kHz / (255d - RC)
gives RC = 143.889, rounded to 144
Resolution = 1 /(255 - 144) = 1 / 111
Duty cycle desired: 37%

0.37 = (CP - 144) / (255 - 144) yields CP = 185.07, rounded to 185.
Summary: prescaler = 3, RC = 144d, CP = 185d: these numbers yield a PWM frequency of 12.012 kHz, a
duty cycle of 36.94 % and a resolution of 0.9 %, which is very close to the initial goal.
Program example:
- SC0 is not programmed, so it keeps its reset value 00h (all flags cleared)
- The PWM signal starts as soon as the last instruction (ldi MC) is executed

;**************** A-R Timer Register Set *******************

RC .def 0D9h,0FFh,0FFh ;reload/capture register
CP .def 0DAh,0FFh,0FFh ;compare register
MC .def 0D5h,0FFh,0FFh ;mode control register
SC0 .def 0D6h,0FFh,0FFh ;status/control register 0
SC1 .def 0D7h,0FFh,0FFh ;status/control register 1
LR .def 0DBh,0FFh,0FFh ;load register

;==

ldi CP, 185 ;compare register = 185d
ldi RC, 144 ;reload register = 144d
ldi SC1,001h ;clock source= CPU clock divided by 3

;prescaler ratio = 1

ldi MC, 11100000b ;auto-reload mode,interrupts disabled
;PWMOUT enabled, start timer

Program example

PWM Generation with ARTimer

3/6

Example 2:
Target: generate a PWM signal of frequency 31.3 kHz with a duty cycle proportional to an input analog
voltage varying between 0V and VCC: 0v corresponds to 0% duty cycle, VCC corresponds to 100% duty
cycle. TheCPU clock is 8 MHz:
Referring to example 1, we find that the prescaler ratio must be 1, the value in RC must be 0 and the value
in CP is taken directly from the A/D output (varying from 0 to 255d dependingupon the analog input):
RC = 0
CP = 0...255d
prescaler ratio = 1
FIN = 8 MHz
FPWM = 8 MHZ / 255 = 31.37 kHz
Duty cycle = CP / 255d
Resolution = 1/255d = 0.39 %
We need to implement a software loop which repetitively converts the analog input to a digital value and
copies this digital value into CP:

A .def 0FFh,0FFh,0FFh ;Accumulator

;************** Port Register Set ***************************

PA .def 0C0h,0FFh,0FFh ;Data Register Port A
PADIR .def 0C4h,0FFh,0FFh ;Data Direction Reg. Port A
PAOPT .def 0CCh,0FFh,0FFh ;Option Register Port A
;**************** Timer Register Set ***********************

RC .def 0D9h,0FFh,0FFh ;reload capture register
CP .def 0DAh,0FFh,0FFh ;compare Register
MC .def 0D5h,0FFh,0FFh ;mode control register
SC0 .def 0D6h,0FFh,0FFh ;status control register 0
SC1 .def 0D7h,0FFh,0FFh ;status control register 1
LR .def 0DBh,0FFh,0FFh ;load register

;**************** ADC Register Set **************************

ADCC .def 0D1h,0FFh,0FFh ;adc control register
ADC .def 0D0h,0FFh,0FFh ;adc result Register

;************* MAIN ***

;port A must be an IOP3 type (port with analog input mode):

ldi PADIR,000h
ldi PAOPT,001h ;PA0 is the analog input
ldi PA, 001h ;PA1..PA7 are input with pull-up

ldi SC1,00000000b ;PSC divides by 1
ldi CP,07fh ;compare register = 127d

;(initial duty = 50%)
ldi RC,000h ;reload register = 0

;(count up from 0 to 255)
ldi MC,11100000b ;auto-reload mode,interrupt disabled

;PWMOUT enabled, start timer with
;duty cycle 50% at start-up

adc_loop
ldi ADCC,030h ;start A/D conversion

wt_eoc
jrr 6,ADCC,wt_eoc ;wait for end-of-conversion
ld A,ADC ;save result into Accumulator
ld CP,A ;copy it into CP reg ister
jp adc_loop ;do it again

Program example

PWM Generation with ARTimer

4/6

The length of the loop “adc_loop” is the interval at which the duty cycle of the PWM signal will be updated.
In this example, this loop lasts around 76µs, so the PWM duty cycle is updated every 2 or 3 PWM cycles.
Calculation of the 80µs:

- Instructions ldi , ld and jp last 4 cycles of 13 clock periods -> 4 x 4 x 13 8MHz periods = 26µs
- Instruction jrr lasts as long as the A/D takes to convert, which is around 50µs at 8MHz -> total length of
adc_loop at 8 MHz = approx. 76µs
This last example shows that, as requested, the CPU is not used to generate the PWM signal, but only to
start/stop it and to update the duty cycle.

PWM Generation with ARTimer

5/6

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics
assumes no responsability for the consequencesof use of such information nor for any infringement of pat-
ents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specificationsmentioned
in this publication are subject to change without notice. This publication supersedes and replaces all infor-
mation previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support
devices or systems without the express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I
2
C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I

2
C Patent.

Rights to use these components in an I
2
C system is granted provided that the system conforms to the I

2
C Standard

Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT
TO ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.

PWM Generation with ARTimer

6/6

